Prof. Yarger Lecture Notes – Fundamentals of Thermodynamics
- Lecture Notes – Set 1 – Thermodynamic Concepts (1-11), Mathematics of Thermodynamics (11-16), Reversible Processes (17-18), Adiabatic Accessibility (19), Isochoric Process (20-21), Isobaric Processes (22-24), Sensible Heat (25), Isochoric Calorimeter (Bomb Calorimeter, 26-27), Isobaric Calorimetry (28-32), Introduction to Thermochemistry (33-35), Standard States (36), Hess’ Law (37), Combustion Rxns (38), Formation Rxns (39), Solution Enthalpy (40-41), Temperature Dependence of Enthalpy (42-43).
- Lecture Notes – Set 2 – Entropy & 2nd Law (44-53), Fundamental Equation for dS (54-57), Temperature Dependence of Entropy (58), dS/ΔS Phase Transformations (59-60), V & P Dependence of Entropy (61-64), Irreversible Processes (65-67), Extremum Principle (68-70), Entropy & Disorder (71-73), Entropy of Ideal Gas (74-77), Entropy of Mixing (78-82), 3rd Law (83-87), Phase Transitions (88-89), Absolute Entropy (90-91), Fundamental Equations for a Closed System (92-97), Legendre Transforms (98-103), Maximum Work (104-106), Maxwell Relations (107-109), Massieu Functions (110-111), Why are Thermodynamic Potentials Useful? (112), Other Types of Work (113), Extremum Principle – Revisited (114-115), Constrained Equilibrium (116-117), Energy Minimum Principle – Revisited (118-122), Isothermal/Isochoric Processes (123-124), Isothermal/Isobaric Processes (125), Summary (126-127).
- Lecture Notes – Set 3 – Entropy Summary (126-127), Thermal Equilibrium (128-129), Mechanical Equilibrium (130), General Extremum (131-132), Open Systems Intro (133-136), Escaping Tendency (137-138), Chemical Reactions (139-140), Multicomponent Homogeneous System (141-142), Partial Molar Quantities (143-146), Gibbs-Duhem (147-149), Maxwell Relations (150), Chemical Potentials (151-152), Pure Gases (153), Fugacity (154-155), Pure Liquids and Solids (156), Fugacity – Escaping Tendency (157-159), Ideal Gas Mixtures (160-162), Real Gas Mixtures (163-164), Lewis & Randall Approx (165-166), Real Gas Compressibility Factor (167), Virial Expansions (168-171), Fugacity Pressure & Temperature Dependence (172-173), Summary for Gases (174), Activities (175), Chemical Equilibrium (176-178), Reaction Quotient (179-181), Gas Phase Reactions (182), N2O4 Example (183-185), Equilibrium Constant (186-193), Heterogeneous Equilibria (194-197), Decarboxylization of CaCO3 (198-199), Buffer Rxns (200).
- Lecture Notes – Set 4 – Phase Eqilibria (201), Phase Diagrams 1-Component (202), Chemical Potential (203), Clapeyron Equation (204-206), Solid-Solid Transition (207-212), Field-Density Phase Diagrams (213-215), Classification of Phase Transitions (216-218), 2nd Order Phase Transition (219-220), Lambda Transition (221-223), Gibbs Phase Rule (224-227), Electrolyte Solutions (228-229), Density-Density Phase Diagrams (230-233), Higher Order Transitions (234-236), Pippard Relations (237-239), Homogeneous Nucleation (240-250), Fluctuations and Stability (251-254), Concavity of Entropy (255-257), Local/Global Stability (258-260), General Fluctuations (261-263), Consequences of Convexity (264), Le Chatlier Principle (265-266), Liquid Solutions (267-268), Liquid-Vapor Phase Diagrams (269-270), Fractional Distillation (271), Ideal Solutions (272-277), Henry’s Law (278-279), Gas Solubility (280-281), Non-Ideal Solutions (282-285), Colligative Properties (286-292), Osmotic Pressure (293-296), Gibbs-Duhem Activities (296-299), Regular Solution Model (300-310), Eutectic Formation (311-314), Fractional Crystallization (315-320), Regular Solutions (321-329), Van Laar Model (330-334), Maxwell Construction for Activities (335), Spinodals (336-337), Stability Relations for Activities (338), Binary Phase Diagrams (339-342).